OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
In this talk, based on joint work with Alexandre Stauffer, we will discuss the problem of providing “uniform growth schemes” for various types of planar maps — namely, of coupling a uniform map with n faces with a uniform map with n+1 faces in such a way that the smaller map is always obtained from the larger by collapsing a single face. We show that uniform growth schemes exist for rooted 2p-angulations of the sphere and for rooted simple triangulations, and briefly touch on some applications to mixing time questions for edge flip chains.