OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
Let X be a simple random walk in \mathbb{Z}_n^d with d\geq 3 and let t_{\rm{cov}} be the expected time it takes for X to visit all vertices of the torus. In joint work with Prévost and Rodriguez we study the set \mathcal{L}_\alpha of points that have not been visited by time \alpha t_{\rm{cov}} and prove that it exhibits a phase transition: there exists \alpha_* so that for all \alpha>\alpha_* and all \epsilon>0 there exists a coupling between \mathcal{L}_\alpha and two i.i.d. Bernoulli sets \mathcal{B}^{\pm} on the torus with parameters n^d}with the property that \mathcal{B}^\subseteq \mathcal{L}_\alpha\subseteq \mathcal{B}^+ with probability tending to 1 as n\to\infty. When \alpha\leq \alpha_*, we prove that there is no such coupling.