On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Parallel holographic illumination has emerged as a technique of choice for two-photon optogenetic control of neuronal circuits organized in three dimensions. Complementary variants of 3D holographic illumination are optimized for simplicity, temporal precision, or axial resolution. The possibility of reaching hundreds of targets in 3D volumes has prompted the development of low-repetition-rate amplified laser sources that achieve high total exit power while keeping low the average power exposure of each cell. These advances allow neuronal circuits distributed between different brain areas to be optically interrogated and controlled with millisecond temporal precision and single-cell resolution. I will review past accomplishments and necessary future developments in circuit optogenetics.