OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
The Hippo pathway is crucial in organ size control and its dysregulation contributes to tumorigenesis. Core components of the Hippo pathway include the protein kinases of MST1/2, MAP4Ks, LATS1/2, the transcription co-activators YAP/TAZ and their DNA binding partners TEADs. LATS phosphorylates YAP/TAZ to promote cytoplasmic localization and degradation, thereby inhibiting YAP/TAZ and cell growth. The Hippo pathway is regulated by a wide range of signals, including cell density, GPCR, cellular energy levels, and mechanical cues. We recently discovered that TEAD shuttles to cytoplasm in a Hippo independent manner. Moreover, the Hippo pathway also plays a critical role in suppressing cancer immunity. The emerging role of the Hippo pathway in tumorigenesis suggests potential therapeutic value of targeting this pathway for cancer treatment.