On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
We apply techniques of exponential asymptotics to the KdV equation to derive the small-time behaviour for dispersive waves that propagate in one direction. The results demonstrate how the amplitude, wavelength and speed of these waves depend on the strength and location of complex-plane singularities of the initial condition. Using matched asymptotic expansions, we show how the small-time dynamics of complex singularities of the time-dependent solution are dictated by a Painlevé II problem with decreasing tritronquée solutions. We relate these dynamics to the solution on the real line.