OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
The ongoing efforts in COVID antiviral discovery is a stark reminder that small molecule drug discovery is still painfully slow. This is partly because the medicinal chemistry optimisation cycle – designing molecules, synthesising molecules, and feeding data from biological assays into the next round of designs – is still empirically driven. In my talk, I will discuss our progress towards using hypothesis-driven machine learning to close the design-make-test cycle: predicting molecular properties, designing optimised molecules and ensuring the designed molecules are rapidly synthesizable. I will show how physical and chemical understanding can be incorporated into machine learning, enabling data-driven methods to be useful in the low-data limit that most drug discovery campaigns operate in. I will illustrate our approach using examples from COVID Moonshot, an open science drug discovery project that aims to discover oral SARS-CoV-2 main protease inhibitors.