OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
In this talk, we will explore three flow configurations that illustrate the behaviour of slow-moving viscous fluids in confined geometries: viscous gravity currents, fracturing of shear-thinning fluids in a Hele-Shaw cell, and rectangular channel flows of non-Newtonian fluids. We will first develop simple mathematical models to describe each setup, and then we will compare the theoretical predictions from these models with laboratory experiments. As is often the case, we will see that even models that are grounded in solid physical principles often fail to accurately predict the real-world flow behaviour. Our aim is to identify the primary physical mechanisms absent from the model using laboratory experiments. We will then refine the mathematical models and see whether better agreement between theory and experiment can be achieved.