OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Neural dynamics represent the hard-to-interpret substrate of circuit computations. However, not all changes in population activity may have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. If the brain operates under such conditions, our chances to learn what computations a circuit is performing from observing its activity will be greatly improved. We used neural recordings and simultaneous optogenetic perturbations to probe cortical dynamics during motor preparatory activity. We found remarkably robust dynamics along certain dimensions of the population activity, which can be shown to carry nearly all of the decodable behavioral information. The circuit thus appears set up to make informative dimensions stiff, i.e., resistive to perturbations, while leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. This robustness can be achieved by a modular circuit organization, whereby modules with normally independent dynamics correct each other, a common feature in robust systems engineering.