OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
We derive optimal statistical decision rules for discrete choice problems when payoffs depend on a partially-identified parameter θ and the decision maker can use a pointidentified parameter P to deduce restrictions on θ. Leading examples include optimal treatment choice under partial identification and optimal pricing with rich unobserved heterogeneity. Our optimal decision rules minimize the maximum risk or regret over the identified set of payoffs conditional on P and use the data efficiently to learn about P. We discuss implementation of optimal decision rules via the bootstrap and Bayesian methods, in both parametric and semiparametric models. We provide detailed applications to treatment choice and optimal pricing. Using a limits of experiments framework, we show that our optimal decision rules can dominate seemingly natural alternatives. Our asymptotic approach is well suited for realistic empirical settings in which the derivation of finite-sample optimal rules is intractable.