OxTalks is Changing
On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Limits of (randomly) growing Schröder trees and exchangeability
We consider finite rooted ordered trees in which every internal node has at least two children, sometimes called Schröder trees; the size |t| of such a tree t is the number of its leaves. An important concept with trees is that of inducing subtrees. Given a tree t of size k and a larger tree t’ of size n\geq k we define 0 \leq \theta(t,t’)\leq 1 to be the probability of obtaining t as a randomly induced subtree of size k in t’. One can think of \theta(t,t’) to be the density of the pattern t in t’. In this talk we consider two closely related questions concerning the nature of \theta:
1. A sequences of trees (t_n)_n with |t_n|\rightarrow\infty is called \theta-convergent, if \theta(t,t_n) converges for every fixed tree t. The limit of (t_n)_n is the function t\mapsto \lim_n\theta(t,t_n). What limits exist?
2. A Markov chain (X_n)_n with X_n being a random tree of size n is called a \theta-chain if P(X_k=t|X_n=t’)=\theta(t,t’) for all k \leq n. What \theta-chains exist?
Similar questions have been treated for many different types of discrete structures (words, permutations, graphs \dots); binary Schröder trees (Catalan trees) are considered in [1]. We present a De Finetti-type representation for \theta-chains and a homeomorphic description of limits of \theta-convergent sequences involving certain tree-like compact subsets of the square [0,1]^2. Questions and results are closely linked to the study of exchangeable hierarchies, see [2].
[1] Evans, Grübel and Wakolbinger. “Doob-Martin boundary of Rémy’s tree growth chain”. The Annals of Probability, 2017.
[2] Forman, Haulk and Pitman. “A representation of exchangeable hierarchies by sampling from random real trees”. Prob.Theory and related Fields, 2017.
[3] Gerstenberg. “Exchangeable interval hypergraphs and limits of ordered discrete structures”. arXiv, 2018.
Date:
8 October 2018, 12:00
Venue:
Mathematical Institute, Woodstock Road OX2 6GG
Venue Details:
L4
Speaker:
Julian Gerstenberg (Leibniz Universität Hannover)
Organising department:
Department of Statistics
Organisers:
Christina Goldschmidt (Department of Statistics, University of Oxford),
James Martin (Department of Statistics, University of Oxford)
Part of:
Probability seminar
Booking required?:
Not required
Audience:
Public
Editor:
Christina Goldschmidt