OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Let G be a transitive nonamenable graph, and consider supercritical Bernoulli bond percolation on G. We prove that the probability that the origin lies in a finite cluster of size n decays exponentially in n. We deduce that:
1. Every infinite cluster has anchored expansion almost surely. This answers positively a question of Benjamini, Lyons, and Schramm (1997).
2. Various observables, including the percolation probability and the truncated susceptibility are analytic functions of p throughout the entire supercritical phase.
Joint work with Tom Hutchcroft.