During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
Poisson Functionals encompass a vide variety of quantities, ranging from edge-functions derived from random geometric graphs to solutions of SDEs with Lévy noise. In this talk, we will examine the use of the Malliavin-Stein method, which allows us to derive central limit theorems by studying what happens if we add a point (or two), to our graph, say. The main result presented here is a Malliavin-Stein-type bound which works under minimal moment assumptions.