On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
We consider “weaves” – loosely, a weave is a set of non-crossing cadlag paths that covers 1+1 dimensional space-time. Here, we do not require any particular distribution for the particle motions. Weaves are a general class of random processes, of which the Brownian web is a canonical example; just as Brownian motion is a canonical example of a (single) random path. It turns out that the space of weaves has an interesting geometric structure in its own right, which will be the focus of the talk. This structure provides key information that leads to an accessible theory of weak convergence for general weaves. Joint work with Jan Swart.