OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Biological matter has the fascinating ability to autonomously generate material deformations via intrinsic active forces, where the latter are often present within effectively two-dimensional structures. The dynamics of such “active surfaces” inevitably entails a complex, self-organized interplay between geometry of a surface and its mechanical interactions with the surrounding. The impact of these factors on the self-organization capacity of surfaces made of an active material, and how related effects are exploited in biological systems, is largely unknown.
In this talk, I will first discuss general numerical challenges in analysing self-organising active surfaces and the bifurcation structure of emergent shape spaces. I will then focus on active surfaces with broken up-down symmetry, of which the eukaryotic cell cortex and epithelial tissues are highly abundant biological examples. In such surfaces, a natural interplay arises between active stresses and surface curvature. We demonstrate that this interplay leads to a comprehensive library of spontaneous shape transformations that resemble stereotypical morphogenetic processes. These include cell-division-like invaginations and the autonomous formation of tubular surfaces of arbitrary length, both of which robustly overcome well-known shape instabilities that would arise in analogue passive systems.
You are welcome to join the seminar on Teams here: teams.microsoft.com/l/meetup-join/19%3ameeting_MWU2MzJiNjgtYzM2Mi00ZWNkLWFiMjktOGQwOTc0MGRkZDll%40thread.v2/0?context=%7b%22Tid%22%3a%22cc95de1b-97f5-4f93-b4ba-fe68b852cf91%22%2c%22Oid%22%3a%22e6ced614-5673-458c-832d-5d4ada66f593%22%7d