On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
A popular method for conducting inference on impulse responses in applied macroeconomics is to compute confidence intervals by local projections, i.e., direct linear regressions of future outcomes on current covariates. This paper proves that local projection inference robustly handles two issues that commonly arise in applications: highly persistent data and the estimation of impulse responses at long horizons. We consider local projections that control for lags of the data. We show that lag-augmented local projections with normal critical values are asymptotically valid uniformly over i) both stationary and non-stationary data, and also over ii) a wide range of impulse response horizons. Moreover, and contrary to conventional wisdom, we show that lag augmentation obviates the need to correct the standard errors for serial correlation in the regression residuals. Hence, local projection inference is arguably both simpler than previously thought and more robust than autoregressive impulse response inference, whose validity is known to depend sensitively on the persistence of the data and on the length of the horizon.
Link to paper: scholar.princeton.edu/sites/default/files/mikkelpm/files/lp_inference.pdf
Please sign up for meetings here: docs.google.com/spreadsheets/d/1GRwPBmtpUwstC4fdLZrnxfnARNYHedHykoRZG4Xq2Bo/edit#gid=0