OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
A classical result obtained in the 50’s and 60’s by Bogoliubov, Parasiuk, Hepp and Zimmerman provides a prescription on how to renormalise amplitudes of Feynman diagrams arising in perturbative quantum field theory in a consistent way. We will discuss an analogue of this theorem which has both an analytic and a probabilistic interpretation. In particular, we will see that it implies that the solutions to a large class of nonlinear stochastic PDEs depend on their driving noise in a surprisingly rigid way. This rigidity is a mathematical manifestation of the “universality” taken for granted when building our intuition on the large-scale behaviour of probabilistic models.