During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
The mitochondrial membrane potential powers both ATP production and mitochondrial Ca2+ transient of mitochondrial Ca2+ permeation into the mitochondria via the mitochondrial Ca2+ uniporter MCU followed by Ca2+ efflux by by the 3Na+/Ca2+ exchanger, NCLX that was discovered by our group . In the first part of my talk I will describe a new strategy for controlling the mitochondrial membrane potential. We are using optogenetic channels for a light dependent control in mitochondrial l membrane potential . In the first part of my talk I will described the challenges of targeting these “optometabolic channels to mitochondria and of using them to study metabolic processes, Ca2+ signaling and physiological activities. The second part on my talk will focus on our studies of the mitochondrial NCLX. . I will first describe how by combining molecular control of NCLX activity with cytosolic or mitochondrial Ca2+ imaging we study the role of NCLX in cell models related to diabetes Parkinson (PD) or pain sensation. I will then describe the mode of NCLX regulation by PKA phosphorylation. Finally I will present new data linking phosphorylation of NCLX to allosteric regulation of NCLX by mitochondrial membrane potential and describe the physiological implication of this regulation on thermogeneration in brown fat.