OxTalks is Changing
OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
THE STRUCTURAL BASIS FOR RELEASE FACTOR ACTIVATION DURING TRANSLATION TERMINATION REVEALED BY TIME-RESOLVED CRYOGENIC ELECTRON MICROSCOPY
When the mRNA translating ribosome encounters a stop codon in its aminoacyl site (A site), it recruits a class-1 release factor (RF) to induce hydrolysis of the ester bond between peptide chain and peptidyl-site (P-site) tRNA. This process, called termination of translation, is under strong selection pressure for high speed and accuracy. Class-1 RFs (RF1, RF2 in bacteria, eRF1 in eukarya and aRF1 in archaea), have structural motifs that recognize stop codons in the decoding center (DC) and a universal GGQ motif for induction of ester bond hydrolysis in the peptidyl transfer center (PTC) 70 Å away from the DC. The finding that free RF2 is compact with only 20 Å between its codon reading and GGQ motifs came therefore as a surprise. Cryo-electron microscopy (cryo-EM) then showed that ribosome-bound RF1 and RF2 have extended structures, suggesting that bacterial RFs are compact when entering the ribosome and switch to the extended form in a stop signal-dependent manner. FRET, cryo-EM and X-ray crystallography, along with a rapid kinetics study suggesting a pre-termination conformational change on the millisecond time-scale of ribosome-bound RF1 and RF2, have lent indirect support to this proposal. However, direct experimental evidence for such a short-lived compact conformation on the native pathway to RF-dependent termination is missing due to its transient nature. Here we use time-resolved cryo-EM to visualize compact and extended forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing complex on the pathway to termination. About 25% of ribosomal complexes have RFs in the compact state at 24 ms reaction time after mixing RF and ribosomes, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms.
Date:
25 February 2019, 11:00
Venue:
Wellcome Trust Centre for Human Genetics, Headington OX3 7BN
Venue Details:
Meeting room A
Speaker:
Dr Ziao Fu (Columbia University of New York)
Organising department:
Wellcome Trust Centre for Human Genetics
Organiser:
Agata Krupa (Wellcome Centre for Human Genetics, University of Oxford)
Host:
Prof Peijun Zhang (University of Oxford )
Part of:
Strubi seminars
Booking required?:
Not required
Audience:
Members of the University only
Editor:
Agata Krupa