During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
Explainable Artificial Intelligence for Biology and Health
Modern machine learning (ML) models can accurately predict patient progress, an individual’s phenotype, or molecular events such as transcription factor binding. However, they do not explain why selected features make sense or why a particular prediction was made. For example, a model may predict that a patient will get chronic kidney disease, which can lead to kidney failure. The lack of explanations about which features drove the prediction – e.g., high systolic blood pressure, high BMI, or others – hinders medical professionals in making diagnoses and decisions on appropriate clinical actions. I will talk about my group’s efforts to develop explainable AI techniques for varied biological and medical applications, including treating cancer based on a patient’s own molecular profile, identifying therapeutic targets for Alzheimer’s, predicting kidney diseases, preventing complications during surgery, enabling pre-hospital diagnoses for trauma patients, and improving our understanding of pan-cancer biology and genome biology.