During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
In general-sum games, the interaction of self-interested learning agents commonly leads to collectively worst-case outcomes, such as defect-defect in the iterated prisoner’s dilemma (IPD). To overcome this, some methods, such as Learning with Opponent-Learning Awareness (LOLA), shape their opponents’ learning process. However, these methods are myopic since only a small number of steps can be anticipated, are asymmetric since they treat other agents as naïve learners, and require the use of higher-order derivatives, which are calculated through white-box access to an opponent’s differentiable learning algorithm.
In this talk I will first introduce Model-Free Opponent Shaping (M-FOS), which overcomes all of these limitations. M-FOS learns in a meta-game in which each meta-step is an episode of the underlying (``inner’‘) game. The meta-state consists of the inner policies, and the meta-policy produces a new inner policy to be used in the next episode. M-FOS then uses generic model-free optimisation methods to learn meta-policies that accomplish long-horizon opponent shaping.
I will finish off the talk with our recent results for adversarial (or cooperative) cheap-talk: How can agents interfere with (or support) the learning process of other agents without being able to act in the environment?