OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Layered materials are foundational to many technologies, such as lithium-ion batteries. However, expanding these materials to include diverse chemistries remains challenging. In this talk, I will address three effort in our lab that seek to expand the scope of structures and properties of these fascinating materials:
First, I will describe a simple and generalisable strategy to self-assemble virtually any molecule with a 2D semiconductor into 3D materials with customisable stacking sequences. Our simulations show how these solids form from a liquid crystalline phase and our experiments demonstrate how the resulting 3D solids merge two unexpected properties: quantum confinement and high electrical conductivity.
Second, I will present our efforts to discover layered electrides; unique ionic solids with lattice sites containing bare electrons instead of anions. We explore the intercalation of fluoride ions into electrides, with the goal of enabling high-performance fluoride-ion batteries.
Third, I will describe our efforts to solve the atomistic structure of thin (‘2D’) amorphous films. I will demonstrate software that allows one to identify local structures in amorphous materials using a statistically rigorous methodology, while highlighting opportunities that are likely to emerge from this capability.