Microfluidics with fluid walls; a simple technology for everyone in cell and molecular biology
Workflows in cell and molecular biology often use microliter volumes and containers with solid walls (e.g., microcentrifuge tubes, microplates). An accessible technology that provides an easy entrée into the use of nanoliter volumes will be described. In this case, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape, or grids containing thousands of identical chambers, are made in seconds using standard cell-growth media on polystyrene Petri dishes; then, interfacial forces pin liquids to substrates, and an immiscible overlay prevents evaporation. The confining fluid walls are pliant, resilient, and optically transparent; they self-heal when liquids are pipetted through them, and they can even drive flows through circuits without the need for external pumps. The technology will be illustrated using some common cell-based workflows (e.g., cell feeding, replating, cloning, cryopreservation, lysis plus RT-PCR, transfection plus genome-editing, fixation plus immuno-labeling, and the response of human cells to cytokines and drugs, worms to osmotic stress, and bacterial biofilms to chemotactic gradients).
Date:
19 July 2018, 11:00
Venue:
NDM Building, Headington OX3 7FZ
Venue Details:
Basement seminar room, TDI
Speaker:
Professor Peter Cook (University of Oxford )
Organising department:
Ludwig Institute for Cancer Research, Oxford Branch
Organiser:
Christina Woodward (Oxford Ludwig Institute, Nuffield Department of Medicine, University of Oxford)
Organiser contact email address:
christina.woodward@ludwig.ox.ac.uk
Host:
Prof Xin Lu (Ludwig Cancer Research, Oxford Branch)
Part of:
Ludwig Institute Seminar Series
Booking required?:
Not required
Audience:
Members of the University only
Editor:
Christina Woodward