On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
It is unknown how dendritic nonlinearities and plasticity mechanisms contribute to computations at the level of neural circuits. We developed a theory that formalises how dendritic nonlinearities that are optimal for integrating synaptic inputs depend on the statistics of presynaptic activity patterns. Our theory accurately predicts the responses of two types of cortical pyramidal cell to patterned two-photon glutamate uncaging. We also derived optimal rules for structural and intrinsic plasticity which ensure that neurons stay tuned to the statistics of their inputs. The optimal structural plasticity rule efficiently identifies ensembles by clustering synapses along the dendritic tree. The same principle suggests an intrinsic plasticity rule for fine-tuning the nonlinear properties of dendritic branches to the dynamics of their presynaptic ensembles, reproducing experimentally observed forms of branch-strength potentiation. These results reveal a new computational principle underlying dendritic integration and plasticity by suggesting a tight functional link between cellular and systems-level properties of cortical circuits.