BEACON Seminar: Circuit-based strategies for long-lasting motor recovery following dopamine depletion
Via Zoom
Seminars this term will be held remotely on Zoom. Links for joining will be sent out before each seminar. Please contact the host if you would like to set up a remote meeting with a speaker. If you have suggestions for future speakers, please contact Lauren (lauren.burgeno@dpag.ox.ac.uk), or Nima (nima.khalighinejad@psy.ox.ac.uk).

ABSTRACT:
Identification of distinct neuronal subpopulations has been essential for understanding brain function, but clinical applications struggle to access specific neurons in heterogeneously mingled populations. Recently, optogenetic protocols targeting neuronal subpopulations in the external globus pallidus (GPe) were shown to provide long-lasting therapeutic effects in dopamine depleted mice.

Here, we leverage underlying synaptic differences between Parvalbumin (PV) and Lim homeobox 6 (Lhx6) subpopulations to drive population-specific neuromodulation in the GPe, using brief bursts of electrical stimulation. We then apply these findings to strategically design a clinically appropriate deep brain stimulation (DBS) protocol, which we show induces long-lasting therapeutic effects that far exceed those of conventional DBS, extending for hours beyond stimulation. These results establish the feasibility of transforming knowledge about circuit architecture into quickly translatable therapeutic approaches.

Recent Publication related to this talk: www.science.org/doi/10.1126/science.abi7852
Date: 30 November 2021, 13:00 (Tuesday, 8th week, Michaelmas 2021)
Venue: Venue to be announced
Speaker: Aryn Gittis (Carnegie Mellon)
Organising department: Department of Experimental Psychology
Organiser: Lauren Burgeno (University of Oxford)
Organiser contact email address: lauren.burgeno@dpag.ox.ac.uk
Part of: Behavioural and Cognitive Neuroscience (BEACON)
Booking required?: Not required
Booking email: lauren.burgeno@dpag.ox.ac.uk
Cost: Free to attend
Audience: Members of the University only
Editor: Halley Cohen