During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
The random walk on the permutations of [N] generated by the transpositions was shown by Diaconis and Shahshahani to mix with sharp cutoff around N log N /2 steps. However, Schramm showed that the distribution of the sizes of the largest cycles concentrates (after rescaling) on the Poisson-Dirichlet distribution PD(0,1) considerably earlier, after (1+\epsilon)N/2 steps. We show that this behaviour in fact emerges precisely during the critical window of (1+\lambda N^{-1/3}) N/2 steps, as \lambda \rightarrow\infty. Our methods are rather different, and involve an analogy with the classical Erdos-Renyi random graph process, the metric scaling limits of a uniformly-chosen connected graph with a fixed finite number of surplus edges, and analysing the directed cycle structure of large 3-regular graphs. Joint work with Christina Goldschmidt.