OxTalks is Changing
OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Design of nanoparticle-bio- interactions towards cancer therapy
The MS Teams Joining Link is: https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZjRmYzg5YWMtNTE0OS00NjViLWI5Y2EtYTg4YWEyZTZlOTVm%40thread.v2/0?context=%7b%22Tid%22%3a%22cc95de1b-97f5-4f93-b4ba-fe68b852cf91%22%2c%22Oid%22%3a%228f227e88-f60a-4b15-a7f5-e88462d8dc82%22%7d.
The specific nature of the nano-bio interaction allows mechanistic understanding of the chemistry in the cellular interior. Such chemistries play a key role in translating knowledge from the fundamental research to the clinical stage. While engineered nanoparticles display biological response as a function of their chemical composition, the exact nature of these effects (e.g. dissolution) can vary between different biological systems. ZnO nanoparticles (a model example) having inherent dissolution property were re-engineered via Fe doping (1-10%) in the gas phase using flame spray pyrolysis (FSP) to efficiently tune particle dissolution, resulting in significant differences in their biological behavior both in the normal and cancer cells.
The silico analysis of the data obtained from cultured cells, syngeneic tumor models and metastasis formation, indicated 2% Fe-doped ZnO was optimal to cause selective cancer cell apoptosis. Further, 3D bioluminescence imaging was performed with 2%Fe doped ZnO NPs to evaluate the potential occurrence of metastases, derived from highly metastatic tumor type KLN 205 cells. The data showed peritumoral administration of the nanoparticles resulted in a local higher level free Zn2+ that impeded tumor growth as well as reduced metastasis formation. In summary, the data showed ZnO based nanoparticle system could be a potential material for the next generation therapeutics.
Date:
3 February 2022, 16:00
Venue:
These event will be held online only
Speaker:
Prof Dr Lutz Maedler (Leibniz Institute for Materials Engineering, University of Bremen)
Organising department:
Department of Materials
Organiser:
Lorraine Laird (Department of Materials)
Organiser contact email address:
communications@materials.ox.ac.uk
Host:
Dr Yalun Sun (University of Oxford)
Part of:
Materials Departmental Colloquia
Booking required?:
Not required
Cost:
Free
Audience:
Public
Editor:
Lorraine Laird