OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
This paper proposes a novel finite-state Markov chain approximation method for Markov processes with continuous support. The method can be used for both uni- and multivariate processes, as well as non-stationary processes such as those with a life-cycle component.The method is based on minimizing the information loss between a misspecified approximating model (a Hidden Markov Model) and the true data-generating process. We prove that and find conditions under which this information loss can be made arbitrarily small if enough grid points are used. In contrast to existing methods, the method provides both an optimal grid and transition probability matrix. The method outperforms existing methods in several dimensions, including parsimoniousness. We compare the performance of our method to existing methods through the lens of an asset-pricing model, and a life-cycle consumption-savings model. We find the choice of the discretization method matters for the accuracy of the model solutions, the welfare costs of risk, and the amount of wealth inequality a life-cycle model can generate