On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Let $T_n$ be a uniformly random tree with vertex set $[n]={1,…,n}$. Let $Delta_n$ be the largest vertex degree in $T_n$ and let $\lambda_n$ be the largest eigenvalue of $T_n$. We show that $|\lambda_n-\sqrt{\Delta_n}| \to 0$ in probability as $n \to \infty$. The key ingredients of our proof are (a) the trace method, (b) a rewiring lemma that allows us to “clean up” our tree without decreasing its top eigenvalue, and© some careful combinatorial arguments.
This is extremely slow joint work with Roberto Imbuzeiro Oliveira and Gabor Lugosi, but we hope to finally finish our write-up in the coming weeks.