Talk by Susie Huang - Characterizing tissue microstructure in the living human brain using high-gradient diffusion MRI

To join this seminar online, please see

Less is known about the structure-function relationship in the human brain than in any other organ system. The challenge of studying brain structure is that brain networks span multiple spatial scales, from individual neurons all the way to whole-brain systems. Diffusion magnetic resonance imaging holds great promise among non-invasive imaging methods for probing cellular structure of any depth and location in the living human brain. Robust methods for in vivo mapping of tissue microstructure by diffusion MRI remain elusive due to the demand for fast and strong diffusion-encoding gradients. I will present an overview of our group’s efforts to advance MR hardware, biophysical modelling, and validation of microstructural metrics derived from diffusion MRI in order to probe the structure of the human brain across multiple scales. I will review current progress and applications of these methods to study axonal microstructure in the normal and aging human brain and assess axonal damage in multiple sclerosis.

Bio: Susie Y. Huang, MD, PhD, is a Radiologist in the Division of Neuroradiology and Athinoula A. Martinos Centre for Biomedical Imaging in the Department of Radiology at the Massachusetts General Hospital, and an Assistant Professor of Radiology at Harvard Medical School. She received a PhD in physical chemistry from the University of California, Los Angeles, and an MD from Harvard Medical School. She has published numerous research articles on the development, translation, and evaluation of novel magnetic resonance imaging techniques for neuroimaging research and clinical applications. Her current research focuses on the development and translation of advanced diffusion MRI methods for probing tissue microstructure in the central nervous system. Dr. Huang currently serves as the lead Principal Investigator on a $14-million NIH BRAIN initiative multi-institutional collaborative grant to develop the next-generation Connectome MRI scanner for multiscale imaging of the human brain.