OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Although the mechanisms used to detect pathogens are well understood, the sensory physiology underlying the rapid functional coordination of immune cells with non-immune cells such as endothelial, epithelial and neuronal cells lacks molecular definition as well as conceptual clarity. A network of ion channels and GPCRs forms the bulwark of sensory physiology across evolutionary scales and systems but their role in guiding inflammatory processes and tissue homeostasis has been understudied because in contrast to neuroscience and physiology, the culture of traditional immunology rarely resonated with that of ion channel biophysics. To address this gap, our current efforts are on identifying and characterizing the key Ca2+-conducting ion channels that play a pivotal role in these processes. This seminar will focus on TRPM7, a TRP channel that plays a crucial role in enabling macrophages to respond to pathogens as well as tissue damage.