On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
The maximum likelihood estimator of nonlinear panel data models with fixed effects is asymptotically biased under rectangular-array asymptotics. The literature has devoted substantial effort to devising methods to correct the maximum-likelihood estimator for its bias as a means to salvage standard inferential procedures. We show that the (recursive, parametric) bootstrap replicates the distribution of the (uncorrected) maximum-likelihood estimator in large samples. This justifies the use of confidence sets constructed via conventional bootstrap methods. No adjustment for the presence of bias needs to be made.