During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
The theory of fluctuating hydrodynamics aims to describe density fluctuations of interacting particle systems as so-called Dean–Kawasaki stochastic partial differential equations. However, Dean–Kawasaki equations are ill-posed and the focus has shifted towards finding well-posed approximations that retain the statistical properties of the particle system. In this talk, we consider the fluctuating hydrodynamics of a system in which particles are attracted to one another through a Coulomb force (Keller–Segel dynamics). We propose an additive-noise approximation and show that it retains the same law of large numbers and central limit theorem as (conjectured for) the particle system. We further deduce a large deviation principle and show that the approximation error lies in the skeleton equation that drives the rate function. Based on joint work with Avi Mayorcas.