OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
The innate immune system provides the first line of defense against infections by rapidly recognizing and eliminating invading microbes. An important component of innate immunity are pattern recognition receptors, which are sensors that constantly monitor the extracellular and intracellular space of host cells for molecules of bacterial origin. Once the presence of bacteria is detected, these sensors initiate an inflammatory response. A subset of these pattern recognition receptors initiates the assembly of cytosolic multi-protein complexes called inflammasomes. The inflammasome complex is a large filamentous assembly formed by progressive oligomerization of receptors and adaptor proteins and serves as an activation platform for inflammatory caspases, a group of cysteine proteases. The prototypic caspase activated by canonical inflammasomes in caspase-1, which control the release of cytokines like IL-1b. Uncontrolled activation of the inflammasome by gain-of-function mutations or sterile inflammatory triggers is an underlying cause of many (auto-) inflammatory diseases. By characterizing new players and regulatory mechanism that control complex assembly and downstream signaling, we aim at identifying new targets for therapeutic modulation of inflammasome activity.