OxTalks is Changing
During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
Prediction when fitting simple models to high-dimensional data
This seminar will take place on Zoom
We study linear subset regression in the context of a high-dimensional linear model. Consider y = a + b’z + e with univariate response y and a d-vector of random regressors z, and a submodel where y is regressed on a set of p explanatory variables that are given by x = M’z, for some d x p matrix M. Here, `high-dimensional’ means that the number d of available explanatory variables in the overall model is much larger than the number p of variables in the submodel. In this paper, we present Pinsker-type results for prediction of y given x. In particular, we show that the mean squared prediction error of the best linear predictor of y given x is close to the mean squared prediction error of the corresponding Bayes predictor E[y|x], provided only that p/log(d) is small. We also show that the mean squared prediction error of the (feasible) least-squares predictor computed from n independent observations of (y,x) is close to that of the Bayes predictor, provided only that both p/log(d) and p/n are small. Our results hold uniformly in the regression parameters and over large collections of distributions for the design variables z.
Please sign up for meetings here: docs.google.com/spreadsheets/d/1GRwPBmtpUwstC4fdLZrnxfnARNYHedHykoRZG4Xq2Bo/edit#gid=0
Date:
15 May 2020, 14:15
Venue:
Venue to be announced
Speaker:
Hannes Leeb (University of Vienna)
Organising department:
Department of Economics
Part of:
Nuffield Econometrics Seminar
Booking required?:
Not required
Audience:
Members of the University only
Editor:
Melis Clark