OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
We present a noisy composite gradient descent algorithm for differentially private statistical estimation in high dimensions. We begin by providing general rates of convergence for the parameter error of successive iterates under assumptions of local restricted strong convexity and local restricted smoothness. Our analysis is local, in that it ensures a linear rate of convergence when the initial iterate lies within a constant-radius region of the true parameter. At each iterate, multivariate Gaussian noise is added to the gradient in order to guarantee that the output satisfies Gaussian differential privacy. We then derive consequences of our theory for linear regression and mean estimation. Motivated by M-estimators used in robust statistics, we study loss functions which downweight the contribution of individual data points in such a way that the sensitivity of function gradients is guaranteed to be bounded, even without the usual assumption that our data lie in a bounded domain. We prove that the objective functions thus obtained indeed satisfy the restricted convexity and restricted smoothness conditions required for our general theory. We will also discuss the benefits of acceleration in optimization procedures, specifically a private version of the Frank-Wolfe algorithm, and its consequences for statistical estimation.
This is based on joint work with Marco Avella-Medina, Casey Bradshaw, Zheng Liu, and Laurentiu Marchis.