On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
The distribution function of the rightmost particle in a branching Brownian
motion satisfies the Fisher-KPP equation:
∂u/∂t = ∂²u/∂x² + u – u²
Such an equation appears also in biology, chemistry or theoretical physics
to describe a moving interface, or a front, between a stable and an unstable
medium.
Thirty years ago, Bramson gave rigorous sharp estimates on the position of
the front, and, fifteen years ago, Ebert and van Saarloos heuristically
identified universal vanishing corrections.
In this presentation, I will present a novel way to study the position of
such a front, which allows to recover all the known terms and find some new
ones. We start by studying a front equation where the non-linearity is
replaced by a condition at a free boundary, and we show how to extend our
results to the actual Fisher-KPP.