OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
The main object of this presentation is a branching process where each individual carries an interval that gets fragmented as time goes. It arises as the branching approximation of a Wright-Fisher model that incorporates both selection and recombination. Quite unexpectedly, this process has a rich asymptotic behaviour with two phase transitions and I will describe several of its long-term properties (survival probability, distribution of block lengths, genealogies). This behaviour is a consequence of some self-similarity of the model, and our results extend to a broad class of superprocesses sharing the same self-similarity.
I will mostly focus on the probabilistic aspects, which are work in progress with Alison Etheridge.