OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
The purpose of this work is to construct confidence intervals for high-dimensional Cox proportional hazards regression models, where the number of time-dependent covariates can be larger than the sample size. The definition of the one-step estimator is similar to those in van de Geer et al. (2014) and Zhang and Zhang (2014), but since in the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, the technical difficulties are fundamentally different. I will talk about the related theoretical and numerical results in this talk. This is joint work with Jelena Bradic (UCSD) and Richard Samworth (Cambridge).