OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
This paper proposes a new test for inequalities linear in possibly partially identified nuisance parameters, called the generalized conditional chi-squared (GCC) test. It extends the subvector conditional chi-squared (sCC) test in Cox and Shi (2023, CS23) to a setting where the nuisance parameter is pre-multiplied by an unknown and estimable matrix of coefficients. Properly accounting for the estimation noise in this matrix while maintaining the simplicity of the sCC test is the main innovation of this paper. As such, the paper provides a simple solution to a broad set of problems including subvector inference for models represented by linear programs, nonparametric instrumental variable models with discrete regressor and instruments, and linear unconditional moment inequality models. We also derive a simplified formula for computing the critical value that makes the computation of the GCC test elementary.