OxTalks is Changing
            
                On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
            
            
                There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
            
            
                If you have any questions, please contact halo@digital.ox.ac.uk
            
         
     
 
            
            
Quantitative MRI: reproducibility, efficiency and complex tissue models
    
	Quantitative MRI (qMRI) is of increasing interest for many neuroscience and neurology applications, motivated by a desire to replace qualitative MR imaging with reproducible and broadly comparable measurements of tissue properties. These measurements are typically made by fitting observations to a model of how the tissue is expected to respond, and hence they depend on the complexity of the model. The MR community as a whole has found it difficult to standardise qMRI and to produce results that are comparable between centres. Our own experience with this began with an attempt to perform multi-component relaxometry on neonates; a failure to produce reliable results led to a broader investigation of rapid gradient echo based relaxometry sequence in general. This work indicated that a significant cause of variability comes ‘magnetisation transfer’ (MT) between the water that is imaged by MRI and protons in semi-solids (i.e. macromolecules) that are abundant in human tissue. I will discuss this issue and present a potential solution that could lead to more reproducible results. I will also discuss methods that we have developed at KCL to model MT effects in MR sequences, and also to measure them. This includes recent work on so-called inhomogeneous MT effects that look to be quite specific to myelinated tissues. Finally, since there is now a large (and increasing) number of different quantitative MRI methods, I will discuss how we could try to evaluate them in order to decide which represents the best use of limited time.
Date:
4 March 2020, 12:30
Venue:
  Cowey Room, WIN@FMRIB Annexe
  
Speaker:
  
    Dr Shaihan Malik
  
    
Organising department:
    Nuffield Department of Clinical Neurosciences
    
Part of:
    OxCIN Seminar Series
Booking required?:
Not required
Audience:
Members of the University only
    
Editor: 
      Nancy Rawlings