OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
In this talk, we will discuss evolutionary games on a binomial random graph G(n,p). These games are determined through a 2-player symmetric game with 2 strategies which are played between the adjacent members of the vertex set. Players/vertices update their strategies synchronously: at each round, each player selects the strategy that is the best response to the current set of strategies its neighbours play. We show that such a system reduces to generalised majority and minority dynamics. We show rapid convergence to unanimity for p in a range that depends on a certain characteristic of the payoff matrix. In the presence of a certain type of bias in the payoff matrix, we determine a sharp threshold on p above which the largest connected component reaches unanimity with high probability, and below which this does not happen.
This is joint work with Jordan Chellig and Calina Durbac.