During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
In this talk, we will discuss evolutionary games on a binomial random graph G(n,p). These games are determined through a 2-player symmetric game with 2 strategies which are played between the adjacent members of the vertex set. Players/vertices update their strategies synchronously: at each round, each player selects the strategy that is the best response to the current set of strategies its neighbours play. We show that such a system reduces to generalised majority and minority dynamics. We show rapid convergence to unanimity for p in a range that depends on a certain characteristic of the payoff matrix. In the presence of a certain type of bias in the payoff matrix, we determine a sharp threshold on p above which the largest connected component reaches unanimity with high probability, and below which this does not happen.
This is joint work with Jordan Chellig and Calina Durbac.