During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
Consider a population where individuals have two characteristics: a size, which is a positive integer, and a type, which is a member of a finite set. This population reproduces in a Galton-Watson fashion, with one additional condition: given that an individual has size $n$, the sum of the sizes of its children is less than or equal to n. We call multi-type Markov branching tree the family tree of such a population.
We show that under some assumptions about the splitting rates, Markov branching trees have scaling limits in distribution which are self-similar fragmentation trees, monotype or multi-type.
We then give two applications: the scaling limits of some growth models of random trees, and new results on the scaling limits of multi-type Galton-Watson trees.
This is joint work with Bénédicte Haas.