OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Consider a population where individuals have two characteristics: a size, which is a positive integer, and a type, which is a member of a finite set. This population reproduces in a Galton-Watson fashion, with one additional condition: given that an individual has size $n$, the sum of the sizes of its children is less than or equal to n. We call multi-type Markov branching tree the family tree of such a population.
We show that under some assumptions about the splitting rates, Markov branching trees have scaling limits in distribution which are self-similar fragmentation trees, monotype or multi-type.
We then give two applications: the scaling limits of some growth models of random trees, and new results on the scaling limits of multi-type Galton-Watson trees.
This is joint work with Bénédicte Haas.