OxTalks is Changing
On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Scaling limits of multi-type Markov Branching Trees
Consider a population where individuals have two characteristics: a size, which is a positive integer, and a type, which is a member of a finite set. This population reproduces in a Galton-Watson fashion, with one additional condition: given that an individual has size $n$, the sum of the sizes of its children is less than or equal to n. We call multi-type Markov branching tree the family tree of such a population.
We show that under some assumptions about the splitting rates, Markov branching trees have scaling limits in distribution which are self-similar fragmentation trees, monotype or multi-type.
We then give two applications: the scaling limits of some growth models of random trees, and new results on the scaling limits of multi-type Galton-Watson trees.
This is joint work with Bénédicte Haas.
Date:
16 February 2022, 12:00
Venue:
Mathematical Institute, Woodstock Road OX2 6GG
Venue Details:
Room L3
Speaker:
Robin Stephenson (University of Sheffield)
Organising department:
Department of Statistics
Organisers:
Matthias Winkel (Department of Statistics, University of Oxford),
Christina Goldschmidt (Department of Statistics, University of Oxford),
James Martin (Department of Statistics, University of Oxford)
Part of:
Probability seminar
Booking required?:
Not required
Audience:
Public
Editors:
Christina Goldschmidt,
James Martin,
Matthias Winkel