OxTalks is Changing
OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Four-dimensional loop-erased random walk and uniform spanning tree
Critical lattice models are believed to converge to a free field in the scaling limit, at or above their critical dimension. This has been established for Ising and \Phi^4 models for d \geq 4. We describe a simple spin model from uniform spanning forests in Z^d whose critical dimension is 4 and prove that the scaling limit is the bi-Laplacian Gaussian field for d\geq 4. At dimension 4, there is a logarithmic correction for the spin-spin correlation and the bi-Laplacian Gaussian field is a log correlated field. The proof also improves the known mean field picture of LERW in d=4: we show that the renormalized escape probability (and arm events) of 4D LERW converge to some “continuum escaping probability”. Based on joint works with Greg Lawler and Xin Sun.
Date:
14 May 2018, 12:00
Venue:
Mathematical Institute, Woodstock Road OX2 6GG
Speaker:
Wei Wu (Department of Statistics, University of Warwick)
Organising department:
Department of Statistics
Organisers:
Christina Goldschmidt (Department of Statistics, University of Oxford),
James Martin (Department of Statistics, University of Oxford)
Part of:
Probability seminar
Booking required?:
Not required
Audience:
Public
Editors:
Christina Goldschmidt,
James Martin