During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
In this talk, based on joint work with Alexandre Stauffer, we will discuss the problem of providing “uniform growth schemes” for various types of planar maps — namely, of coupling a uniform map with n faces with a uniform map with n+1 faces in such a way that the smaller map is always obtained from the larger by collapsing a single face. We show that uniform growth schemes exist for rooted 2p-angulations of the sphere and for rooted simple triangulations, and briefly touch on some applications to mixing time questions for edge flip chains.