OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
In this talk I will discuss how adding a compact region of spatial heterogeneity to a PDE model can not only induce the emergence of fully localised 2D patterns, but also allows us to rigorously prove and characterise their bifurcation. The idea is inspired by experimental and numerical studies of magnetic fluids and tornados, where our compact heterogeneity corresponds to a local spike in the magnetic field and temperature gradient, respectively. In particular, we obtain local bifurcation results for fully localised patterns both with and without radial or dihedral symmetry, and rigorously continue these solutions to large amplitude. Notably, the initial bifurcating solution (which can be stable at bifurcation) varies between a radially-symmetric spot and a ‘dipole’ solution as the width of the spatial heterogeneity increases.
This work is in collaboration with David J.B. Lloyd and Matthew R. Turner (both University of Surrey).