OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Economists are often interested in estimating averages with respect to distributions of unobservables. Examples are moments of individual fixed-effects, average effects in discrete choice models, or counterfactual simulations in structural models. For such quantities, we propose and study “posterior average effects”, where the average is computed conditional on the sample, in the spirit of empirical Bayes and shrinkage methods. While the usefulness of shrinkage for prediction is well-understood, a justification of posterior conditioning to estimate population averages is currently lacking. We establish two robustness properties of posterior average effects under misspecification of the assumed distribution of unobservables: they are optimal in terms of local worst-case bias, and their global bias is at most twice the minimum worst-case bias within a large class of estimators. We establish related robustness results for posterior predictors. In addition, we suggest a simple measure of the information contained in the posterior conditioning. Lastly, we present two empirical illustrations, to estimate the distributions of neighborhood effects in the US, and of permanent and transitory components in a model of income dynamics.
Link to paper: arxiv.org/abs/1906.06360