During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
We use recent results from the theory of random matrices to improve instrumental variables estimation with many instruments. In settings where the first-stage parameters are dense, we show that Ridge lowers the implicit price of a bias adjustment. This comes along with improved (finite-sample) properties in the second stage regression. Our theoretical results nest existing results on bias approximation and bias adjustment. Moreover, it extends them to settings with more instruments than observations.