OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
The concept of equilibrium is powerful and long dominant in the sciences; in physiology, the equilibrium paradigm is embodied in the principle of homeostasis, an equilibrium state that is enforced by negative feedback loops. But physiological quantities are, in fact, not in static equilibrium. Oscillation is another critical form of behavior, seen in both normal physiology and in pathophysiology.
We will review examples of oscillation in normal physiology: gene expression, embryology, hormone regulation, neuronal bursting. We will focus on how mathematical modeling can isolate and identify the mechanisms responsible for the oscillatory behavior.
We will also discuss the why of oscillation: what is the functional role, if any, of these oscillatory processes?
There are also a number of examples of pathological oscillation in physiology and medicine, ranging from muscle tremors to cardiac early-afterdepolarizations to ventricular fibrillation to punctate patterning in arterial calcification. In these cases, mathematical modeling shows us how to design therapeutic interventions and develop new categories of pharmacology.