OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Random permutations show up in a variety of areas in mathematics and its applications. In connection with physical applications (e.g., the lambda transition for superfluid helium), there is an interest in random spatial permutations — that is, laws on permutations that have a ‘geometric bias’. There are compelling heuristic arguments that this spatial bias has little effect on the distribution of the largest cycles of a random spatial permutation, provided that large cycles actually exist. I’ll discuss a particular model of random spatial permutations (directed permutations on asymmetric tori) where these heuristics can be made precise, and large cycles can be shown to follow the expected (Poisson-Dirichlet) law.
Based on joint work with Alan Hammond.